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ABSTRACT

Empirical stress-strain functions
have been widely utilised to determine the
effects of plasticity on the response of
given structures to the application of load.
A less common use has been in the design
and optimisation of structures, when
structural form is defined and it is
required to find detail dimensions so that
a given load may be safely and efficiently
equilibrated.

The Ramberg-Osgood stress-strain
function is used here to obtain solutions
in closed form to a number of compression
surface optimisation problems, including
rectangular plates, honeycomb core sandwich
panels, and surfaces with wide column type
stiffening. On this basis a systematic
evaluation of the relationship between
material properties and structural
efficiency becomes possible.

INTRODUCTION

In order to accurately account for
the effects of plasticity in the analysis
of structural behaviour, an adequate
characterisation of realistic material
stress-strain properties is essential. It
is an advantage if this information can be
made available in continuous functional
form, as opposed to numerical data
requiring interpolation since the rate of
change of stress with strain is of
importance, especially in stability
calculations.

This feature is of particular
significance when the process of analysis
is extended into the field of design and
optimisation as in the present paper.
Historically, a number of function forms
have been proposed for specific purposed.’?®
However, the relationship first proposed
by Ramberg-Osgood’has since its introduction
continued to find wide and varied
application in structural analyses of all
kinds, and forms the basis of the work
described here.
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Solutions to a number of optimisation
problems concerned with the stability of
compression surfaces are obtained which may
be useful to designers. These solutions
are used to illustrate directly the
relationship between basic material stress-
strain properties, and structure weight for
this class of structures.

STRESS-STRAIN RELATIONSHIPS

Ramberg and Osgood proposed the
following relationship between uniaxial
stress and strain.

I § f.\n
e = g+ ol (1)
where € = engineering strain
f = uniaxial stress
E = Young's modulus

The first term in (1) may be
identified as the elastic (recoverable)
strain, and the second term as the plastic
(irrecoverable) strain.

The shape of the stress-strain
curve is determined by the exponent n.
As n becomes large, yielding occurs more
sharply until in the limit, as n tends to
infinity the function represents elastic-
perfectly plastic behaviour.

The coefficient o is of less obvious
physical significance, but may be
conveniently expressed in terms of f,, the
0.2% proof stress (usually taken as the
maximum allowable stress in compression),
so that
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Figure 1. Ramberg-Osgood stress-strain curves
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Figure 2. Stress-strain functions

A number of stress-strain relations
may now be conveniently derived, including
secant and tangent moduli given by

E
s f/E _ 1
* - -y 3
_ - n-1
where ¢ = a(f/E)n 1. %i%%g. %é%ib
from (2) (4)
E
£t - AL/E) 1
E o€ 1+n'¢ (5)

The separate identification of elastic and
plastic strains also allows the
formulation of transition values of
Poisson’s ratio, giving
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v+ v
e ¢

v o= 1+39

(6)

where v and v_ are elastic and fully
plastic”valuestof Poisson's ratio
respectively (usually about 0.3 and 0.5)

DESIGN APPLICATIONS

Uniform isotropic plate

It is required to design a flat,
uniform, rectangular plate of length a and
width b, to carry a uniformly applied axial
loading w. The plate has simply supported
edges and is to be made from a material
which may be characterised by equation (1)
and which may therefore be identified by
three parameters E, n and £, .

Stowe117gives for the buckling load
intensity w of such a plate an expression
similar to the following, which correlates
well with experimental observation
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The analysis is based on an approxi=
mate plasticity theory, giving lower loads
than the more precise theory of Ilyushin®
However, the good agreement with experi-
ment may well be accounted for by the
presence of small imperfections as in the
case discussed by Hutchinson and
Budiansky 26

In his paper,Stowell assumes v = 0,5,
which is an unnecessary restriction since
equation (6) is available.

Equations (3)(4)(5) and (6) may be
used to transform (7) into a design
equation, when the load intensity w is
given and the plate thickness t or stress
f(=w/t) is required. This procedure gives

(f/E)’x{lz(lw)[l-{v——;TP}f}

- (8)
Eb %
3(1-¢)
{[1* (1+n¢)] mby +() *2}
t _ fwi/ f
»° hﬁﬂ/(ﬁ) 9)

For given values of ﬁ% and %, a

value of stress may always be found which
satisfies (8), and then plate thickness
follows from (9). Note that for any given
value of stress, the integer m must be
chosen which maximises the right hand side
of (8).

The results for plates of finite
aspect ratio shown in figure 3 indicate
that the onset of plasticity, illustrated
by reducing proof stress, increases plate
thickness and reduces buckle wavelength
below the ideal elastic value.
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Figure 3. Design of simply supported rectangular
plates in compression.

} s

12} g%“o
{o
o} 15 n $=5
k}9$ 20
QI+
6
44
2+
o i 1 )} 1 1 lf
o 1 2 3 4, 5 6
k:t?ﬁ

Figure 4. Long plates in compression:
material property effects

Figure 4 utilises long plates (a/b = 5.0)
to show how improvements in proof stress
and changes in plastic strain exponent n
affect the required thickness, and hence
the weight of plates of this type.

Honeycomb sandwich panel

The analysis of sandwich panel
behaviour has received extensive treatment
especially during the period 1950-65, when
many high speed aeroplane projects were
being developedi5910 1s

The work has been summarised
comprehensively by Plantemal’” Several
authors have considered the problems of
design and optimisation including Wittrick
Williams.)’ Bijlaard® and Kaechelel®
However no systematic introduction of
plasticity effects has been attempted.
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The structure considered here is a
rectangular, simply supported panel with
isotropic¢ faceplates and core. The core
is honeycomb, fabricated from the same
material as the faceplates. The panel is
required to carry a uniform uniaxial
compressive loading w without buckling,
and the design process is required to
specify face thickness, panel depth and
core stiffness. All elements are assumed
to be perfectly manufactured, and no
allowance is made for adhesive.

Two modes of instability must be
considered, wrinkling and overall pangl
buckling.

The faceplate wrinkling stress is
given by *

r
f =K LEfEcG;E (10)
where Gc = core transverse shear modulus

E

core direct modulus under
loads normal to panel surface

for an ideal hexagonal honeycomb corels

64(1+ve)
Ec = 15 Gc a1
Ef = faceplate modulus.

Plantemal’suggests that the effects
of faceplate plasticity are accounted for
by using the so-called geometric modulus,
so that

Ef _ 4Et
T < ES—:f;;fr (12

The buckling coefficient K may be
conservatively taken to be 0.5. Equation
(10) may now be solved for the core
stiffness required to prevent face
wrinkling under the stress f, giving

- A ot o

For the loading at which overall panel
buckling occurs Plantema gives

ol

e

o
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ot
+
>
St

= (19
2(1-V.) G_/E
1+A [1+ (1ve) Gc/E ]

; P t/b.h/bj

which takes account of transverse shear
flexibility.

B
Eb

t = face thickness = é%
h = ©panel depth
b = panel width transverse to
loading direction
e - 2EE, _ 2
T E + Et 2 + n¢



2
A = wavelength parameter = (é%)

a = panel length

m = number of half-waves in direct-

ion of loading which for a
given panel must be chosen to
minimise w.

When loading w is given, (14) may be
solved for the panel depth required to
prevent buckling, giving

@7 - 16(1-2)., E_IG Ef'ﬂ

h _ Eb ' 1+ 14 e £ x| c/ Al
b BT —~ EE w/Eb J
201055 L s ;

(15)
Note that for given w, m and hence X, must
be chosen to maximise panel depth h.

Panel equivalent thickness t*, which
is proportional to weight is given by

P
t* = 2t + S p
p
where P, = core density
p = faceplate density

For a honeycomb core made of the same
materials as the faces,

p _ 64(1+ve) EE
15 " E
so that finally
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Figure 5. Sandwich panel optimisation:

faceplate stress variation
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Equations (13), (15) and (16) are
functions of face stress alone so that the
value of stress which minimises panel
equivalent thickness may be found by a
simple numerical procedure, as indicated
by figure 5.

Typical results for short panels
are shown in Figure 6. which indicates
how plasticity reduces buckle wavelength
and increases panel weight. The effect
of material parameters n and f,/E on
panel weight is illustrated in figure 7
for long panels (a/b = 5)
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Figure 6. Design of simply supported rectangular

sandwich panels in compression
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Compression panels with wide-column type
reinforcement

Perhaps the most common type of
compression surface utilised in shell
structures for aerospace applications is
of the uniaxially stiffened wide column
type.

The optimisation of such surfaces
has been considered in detail by many :
authors including Farrar®Catchpole? Cox}l®
Emero and Spunt, Gerard®and Gallagher?
Their work has shown that theoretically
the lightest designs are obtained when
local and flexural modes coincide at the
design load. More recently a number of
authors have shown in principle that these
procedures may lead to designs with
significant reductions in strength, coupled
with undesirable failure characteristics
due to manufacturing imperfectionsl® 18 20 242
However, there is as yet little experimental
evidence of these effects. This poses
certain difficulties for the practical
designer in that not only are these
investigations incomplete but also the
results which are available are not easily
generalised especially with regard to the
data on imperfection magnitude and
distribution required when considering a
spectrum of possible designs. In the
circumstances, a sensible course would seem
to require that a rather conservative view
be taken of theoretical buckling strengths,
together with a continuation of the
traditional procedure of thorough ad hoc
testing.

With these reservations in mind, we
may proceed to consider the introduction of
plasticity effects into the design process.

Short wave (local) buckling stress

is given by
t2
f = KlEt(E) (17)
where t = skin thickness
b = stiffener spacing
Ki = 1local buckling coefficient

usually available in numerical
form.

The Euler buckling stress is

b 2
f = KE/(}) (18)
where L. = frame spacing
K; = Euler buckling coefficient

The use of tangent modulus is
equations (17) and (18) is an approximation
which in each case is justified by
experimental observation. For local
buckling this represents a lower bound’
for the ideal structure whereas for
Euler buckling the tangent modulus,
although theoretically ill-founded, never-
theless qualitatively accounts for some
small degree of imperfection of the order
of that encountered in practice. Stress

328

and load intensity are related by

= w
f = Kat (19)
where K; is the area thickness coefficient.

Equations (17)(18) and (19) may be
combined together to give

fwE, | %
= _t
: - FLL]
3i%
b = BF%%—! (20)
o3
t = T %E
t
where coefficients are
F = {?,szﬂ*
- .
K1K3
B = (21)
[ K° .
K32*
T o= K Ky

These coefficients are functions only of
the dimensionless ratios describing the
proportions of the surface stiffening
system and may be separately varied to
maximise F and hence surface stress. Thus
the coefficients achieve specific values
for any particular form of stiffening
system, and also reflect any reductions
which may be made to account for the
effects of imperfections mentioned above.

Equations (20) may be conveniently
recast as functions of surface stress by
using relationships already developed,
giving

Fw _ . f 2

F, = () (1 + n¢) (22)
i £

EL = () (1 + n¢) (23)
P o4y (14 e (24)
BL E

Fitx _ f

- = (§) (1 + n¢) (25)

where t* = panel equivalent thickness.

These expressions provide a suitable
basis for the preparation of data sheets
specific to any given materal as shown
in Figure 8.
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Wide column surfaces with optimum support
locations

The results obtained above may be
utilised in the design of an array of
such surfaces, supported at regular
intervals measured in the direction of
loading, by ribs or frames of cross
section area Ar'

The total equivalent surface thickness
of such an array is

A
T
e = t* + =
t t* +

If we assume that support area A
is constant ie. independent of surfack
stress and support spacing, this
equation may now be expressed entirely in
terms of surface stress, so that

e 2
Bé_ - R e 26
AI‘
where Zz = Fu
EAI}

Equation (26) may be differentiated
directly to find the surface stress
which minimises total equivalent thickness,
giving the following results.
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Again, for any given material,
these functions may be plotted directly
as a set of data sheets (figure 9) which
may be used for initial design purposes
or for comparative studies of different
materials.
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Figure 9. 1Ideal optimum data for panels with

optimised support locations

Analagous expressions may be developed for
the situation where frame size is related

to the transverse support stiffness

required to prevent general instability.

This analysis is afforded a more
extensive treatment in reference 27.



Optimum reinforced circular shell

The maximum endload intensity in a
thin-walled circular shell of diameter D
required to transmit a bending moment M
is given by

= éMz (32)
7D

If the optimum frame spacings derived
above are used, shell diameter and maximum
surface stress may therefore be related
using (27) and 32) to give

EA 372
T r _ 1
D[Z'_F—M—] R P
& [prncnenyd
Total equivalent shell cross-section

area is given by

A =

s nDt€

so that from (31) and (33)

A |-EE S =
anMA

T

[3 + n(n+2)¢]
&} [2ennenydf

For a perfectly elastic material
¢ = 0, and equations (33) and (34)
indicate that the optimum shell will have
a diameter as small as possible, limited
only by the maximum permitted surface
stress.

(34)

When plasticity is included,
equation (34) (which is illustrated in
figure 10) exhibits a minimum value at a
stress which is therefore a characteristic
property of the material under consider-
ation, provided n > 2 (which is the case
for all materials commonly used in
aircraft construction). The optimum
diameter then follows from (33).
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Figure 10. Wide column reinforced shell:

variation of shell diameter

The relationships developed above
may therefore be used to systematically
explore the effect of basic material
parameters on the potential weight
efficiency of a wide class of structural
forms as shown in Figure 11.
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Figure 11. Material property effects on the

weight of ideal optimum shells



CONCLUSION

A well established empirical stress
strain relationship has been used to derive
design equations for a number of structural
elements whose strength is limited by
buckling phenomena.

The results obtained serve as a
basis not only for determining ideal
structural dimensions, but also for the
systematic parametric study of material
properties in relation to structural
efficiency. The structure weights
indicated should be regarded as lower
bound values, which will inevitably
increase as practical constraints are
imposed.
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